GANs are a clever way of training a generative model by framing the problem as a supervised learning problem with two sub-models: the generator model that we train to generate new examples, and the discriminator model that tries to classify examples as either real (from the domain) or fake (generated).
Adding Adversarial loss and perceptual loss (VGGface) to deepfakes'(reddit user) auto-encoder architecture.04-11-2020
Many machine learning systems look at some kind of complicated input (say, an image) and produce a simple output (a label like, "cat"). By contrast, the goal of a generative model is something like the opposite: take a small piece of input—perhaps a few random numbers—and produce a complex output, like an image of a realistic-looking face. A generative adversarial network (GAN) is an especially effective type of generative model, introduced only a few years ago, which has been a subject of intense interest in the machine learning community.04-11-2020
This tutorial demonstrates how to generate images of handwritten digits using a Deep Convolutional Generative Adversarial Network (DCGAN). The code is written using the Keras Sequential API with a tf.GradientTape training loop.07-12-2020
Photo retouching is a time-consuming and challenging task that requires advanced skills beyond the abilities of casual photographers. This project aims to construct an agent which learns to edit photo in human-like fashion. Recently, theres has been lots of tasks enhance their robustness and performance via adversarial learning. We borrow the concept of adversarial learning into photo aesthetic improving task, and use the policy gradient to optimize the policy network whose action space is human-like.11-12-2020